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1 Introduction

Mathematical and statistical inverse problem techniques in the context of the biological sciences are becoming
increasing prevalent and, consequently, of increasing importance. Classical estimation theory has been
primarily developed in a statistical context (based on, e.g., asymptotic distribution, hypothesis testing and
Bayesian approaches that involve large data sets) for relatively simple models. However, recent advances in
both theory and computation suggest that classical inverse problem techniques (regularized least squares,
constrained maximum likelihood, etc.) with increasingly complex models will play a significant role in near
term future biological modeling research efforts. Model development, validation and comparison techniques
[8] such as the Kullback-Leibler Information “distance” between models (also called the discrimination
information) [16, 17], the Akaike Information Criterion [2, 3], the Takeuchi Information Criterion [24], various
Likelihood Ratio Tests [8] and ANOVA type Hypothesis Testing [4, 5] should see significant use with nonlinear
dynamical systems models. However, since all of theses statistically–based techniques require the availability
of sufficiently rich data sets, they will have limited success and impact in scientific advancement unless inverse
problem and estimation “experts” are working in significant, close collaborations with biologists to design
experiments in the context of modeling efforts.

In this paper we illustrate some of the inherent difficulties that one can anticipate in trying to develop and
validate a reasonably complex dynamical model with only “literature” data (often referred to as “cold data”
by inverse problem investigators since it was not collected with model development in mind). We do this in
the context of model development of a biologically important system for reactivation of latent virus under the
constraint of limited data (no direct observations of any of the seven model compartments, a limited number
of longitudinal observations per experiment, observations of only percentages, i.e., ratios, of cell counts).
The modeling and least squares efforts lead in this case to specific suggestions for design of new experiments
and the type of data needed. In this example, while some parameters can be “estimated” from literature
data by considering limiting (as t → 0 or t →∞) set point values, the longitudinal data available consists of
“% viable cells” in terms of ratios of latent plus replicating host cells. This data leads to very difficult least
squares or maximum likelihood inverse problems for dynamic parameters as evidenced by relatively large
standard errors and to lack of ability to validate viral compartment dynamics in the model. However, as we
shall see, the modeling effort leads to suggestions for detailed refined models as well as new experiments.

2 A Mathematical Model

We consider a mathematical model that describes the reactivation of a latent virus by chemical inducers at
the cellular level. Here we first give the differential equations that model the dynamics of host cells and viral
DNA without deriving the model. Interested readers can find the details and a derivation of the model in
[15]. When a latent cell line is growing in a nutritious environment, the cell line is considered to be uninduced
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and in the cases considered in [15], can be described by the nonlinear ODEs

dHL

dt
= (γL − α0)HL

dHR

dt
= α0HL − dI(V̄I)HR

dHN

dt
= dLHL + dI(V̄I)HR − µHN

dL

dt
= (γL − α0)L

dR

dt
= α0L−

(
dI(V̄I)− κ + b

)
R

dVI

dt
= bR− (

p + dI(V̄I)
)
VI ,

(1)

and

VF (t) = VF0 +
∫ t

t0

pVI(u)du.

The compartmental variables and the parameters for this model are defined in Table 1 and Table 2, respec-
tively. Let s denote the concentration level of chemical inducing agents and define α(s) and δR(s) to be the
viral reactivation rate and the host cell death rate caused by chemical inducers. Then the host cells and viral
dynamics during reactivation (induced) as derived in [15] are governed by the following differential equations

dHL

dt
= (γL − α(s)) HL

dHR

dt
= α(s)HL −

(
dI(V̄I) + δR(s)

)
HR

dHN

dt
= dLHL +

(
dI(V̄I) + δR(s)

)
HR − µHN

dL

dt
= (γL − α(s)) L

dR

dt
= α(s)L− (

dI(V̄I) + δR(s)− κ + b
)
R

dVI

dt
= bR− (

p + dI(V̄I) + δR(s)
)
VI

(2)

and

VF (t) = VF0 +
∫ t

t0

pVI(u)du.
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Compartment Symbol Units

Host cells (latent virus only) HL number of cells

Host cells (lytic virus only) HR number of cells

Nonviable host cells HN number of cells

Latent virus L DNA copies

Lytic virus R DNA copies

Intracellular virus VI DNA copies

Free virus VF number of virions

Table 1: ODE Model Compartments.

Parameter Symbol Units

Net growth of latent host cells γL hr−1

Nonviable cell degradation µ hr−1

Natural death of latent host cells dL hr−1

Spontaneous reactivation of latent host cells α0 hr−1

Cell death due to viral lysis c hr−1

Synthesis of viral DNA κ hr−1

Sequestration of viral DNA for encapsulation b hr−1

Packaging and secretion of virions p hr−1

Viral DNA per lytic host cell nT -

Table 2: Uninduced Parameter Description.

4



3 Parameter Estimation

We first estimate many of the uninduced model parameters from experimental observations cited in the
literature. In the uninduced cell cultures, experimentalists normally observe the fraction as of lytic host cells,
the fraction Nr of nonviable host cells, host cell doubling time Dp and average copies nT of viral DNA per cell.
These values can be approximated using values from the experimental literature [10, 14, 18, 19, 20, 21, 25, 27]
and they mathematically correspond to

as =
(

HR

HL + HR + HN

)

t→∞
Nr =

(
HN

HL + HR + HN

)

t→∞

2 =
(HL + HR + HN )t=Dp

(HL + HR + HN )t=0
nT =

(
L + R + VI

HL + HR + HN

)

t→∞
.

(3)

It follows that the uninduced parameters are related by

dL =
ln(2)/Dp + µNr

1− as −Nr
− γL

c =
ln(2)

asVIADp
(Nr − 1) +

γL

asVIA
(1− as −Nr)

α0 = γL − ln(2)
Dp

p =
RA

TVIA
− (1− as −Nr)

as

(
γL − ln(2)

Dp

)

κ =
(

γL − ln(2)/Dp

asRA

)
(RA −NrRA − nT + asVIA) + b

n =
nT − as(RA + VIA)

1− as −Nr
,

(4)

where n = L/HL denotes the average number of latent viral DNA copies per latently infected host cell
which is assumed to be constant for the model derivation in [15]. Here RA and VIA denote the average viral
replicating DNA, respectively, and viral intracellular DNA and are defined by

VIA =
(

VI

HR

)

t→∞
RA =

(
R

HR

)

t→∞
. (5)

Although the values of RA and VIA are the only two values in the uninduced model parameters that cannot
be obtained from the literature; they are chosen for our simulations so that (4) holds and all the parameters
involved are positive.

We next formulate an inverse problem for the induced model to obtain the viral reactivation rate α(s) and
the host cell death rate δR(s) by the chemical inducers using cell viability data. We use two independent
sets of experimental data from the literature [26, 27] wherein the data are given in percentage of viable cells
at different inducer (butyrate) concentration and are collected every 24 hours over a maximum period of five
days.

5



We considered the special case with parametric functional forms δR(s) = δcs, α(s) = αcs + α0 and let
q = (δc, αc) and x = (HL,HR, HN , L,R, VI , VF )T . Then the differential equations in the model for the
induced case (2) can be written in a general form

ẋ = g(t, x, s, q) (6)
x(0) = x0,

where g : R+ × Rr × R+ × Rm → Rr for r = 7, m = 2, and x0 = (HL0,HR0,HN0, L0, R0, VI0, VF0)T . To
correspond with the experimental data given in percentage of viable cells, we define the outputs of the model

f(t, s, q) =
[
Htotal(t, s, q)−HN (t, s, q)

Htotal(t, s, q)

]
, t, s ≥ 0,

where Htotal = HL+HR+HN . In each least squares parameter fit to the data, the data is longitudinal (taken
at tk) and across several levels si of inducer. This is indexed by τj = (tk, si) for k = 1, . . . , K, i = 1, . . . , I,
and observations yj for the model values fj(q) = f(tk, si, q), j = 1, . . . , N = KI. Then we construct the
ordinary least square (OLS) inverse problem by seeking q̂ that minimize the cost criterion

J(q) =
N∑

j=1

|yj − fj(q)|2, (7)

where {yj} denotes the experimental data.

Once the optimal q̂ are found using the Nelder-Mead algorithm, standard errors and confidence intervals are
computed by using the asymptotic theory which we proceed to outline. Assume N scalar longitudinal/inducer
level observations (time/inducer series of numbers or ratios of numbers of cells as described below) are
represented by the statistical model

Yj ≡ fj(q0) + εj , j = 1, 2, . . . N, (8)

where fj(q0) is the model for the observations in terms of the state variables and q0 ∈ Rm is a “set” of
theoretical “true” parameter values (assumed to exist in a standard statistical approach). Assume further
that the errors εj , j = 1, 2, . . . , N in the statistical model of the observation or measurement process (8)
are independent identically distributed (i.i.d.) random variables with mean E[εj ] = 0 and constant variance
var[εj ] = σ2

0 where of course σ2
0 is unknown. The constant variance assumption can be validated by use of

standard residual plots with the data used in our inverse problems. It follows that the observations Yj are
i.i.d. with mean E[Yj ] = fj(q0) and variance var[Yj ] = σ2

0 .

Using the data {yj} for the observation process {Yj} with the model, J(q) is optimized by finding the OLS
estimator q̂ in (7). Note that the estimator q̂OLS is also a random variable with a distribution called the
sampling distribution because Yj is a random variable. Knowledge of this sampling distribution provides
uncertainty information (e.g., standard errors) for the numerical values of q̂ obtained using a specific data
set {yj} (i.e., a realization of {Yj}) when minimizing J(q).

Under reasonable assumptions on smoothness and regularity (the smoothness requirements for model so-
lutions are readily verified using continuous dependence results for ordinary differential equations in our
example; the regularity requirements involve, among others, conditions on how the observations are taken as
sample size increases, i.e., as N → ∞), the standard nonlinear regression approximation theory ([11], [12],
[13], and Chapter 12 of [22]) for asymptotic (as N → ∞) distributions can be invoked. This theory yields
that the sampling distribution for the estimate q̂(Y ) = q̂OLS(Y ), where Y = {Yj}N

j=1, is approximately a m-
multivariate Gaussian with mean E[q̂(Y )] ≈ q0 and covariance matrix cov[q̂(Y )] ≈ Σ0 = σ2

0 [χT (q0)χ(q0)]−1.
Here χ(q̂) = Fq(q) is the N ×m sensitivity matrix with elements

χjk(q) =
∂fj(q)
∂qk

and Fq(q) ≡ (f1q(q), . . . , fNq(q))T .
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That is, for N large, the sampling distribution approximately satisfies

q̂OLS(Y ) ∼ Nm(q0, σ
2
0 [χT (q0)χ(q0)]−1) := Nm(q0,Σ0). (9)

The elements of the matrix χ = (χjk) can be estimated using the forward difference

χjk(q) =
∂fj(q)
∂qk

≈ fj(q + hk)− fj(q)
|hk| ,

where hk is an m-vector with nonzero entry in only the kth component, or using sensitivity equations (see [7]
and the references therein). Here we chose the sensitivity equation approach and since q0, σ0 are not known,
we approximate them in Σ0 = σ2

0 [χT (q0)χ(q0)]−1. Following standard practice, Σ0 is approximated by

Σ0 ≈ Σ(q̂) = σ̂2[χT (q̂)χ(q̂)]−1

where q̂ is the parameter estimate obtained from minimizing (7) and χ(q̂) =
∂F

∂q
(q̂). From the outputs defined

in (6), it suffices to compute the sensitivities
∂x

∂q
by solving the r ×m matrix linear variational differential

equation (called the the sensitivity equation in the applied mathematics and engineering literature)

d

dt

(
∂x

∂q

)
=

∂g

∂x

∂x

∂q
+

∂g

∂q
. (10)

The matrix coefficient and the forcing function in this equation are evaluated along solutions of the system
equation (6). The approximation σ̂2 to σ2

0 is given by

σ2
0 ≈ σ̂2 =

1
N −m

N∑

j=1

|yj − fj(q̂)|2.

Standard errors to be used in confidence interval calculations are thus given by SEk(q̂) =
√

Σkk(q̂), k =
1, 2, . . . ,m (see [9]).

Finally, in order to compute the confidence intervals (at the 100(1− c)% level) for the estimated parameters
δc and αc, we define the confidence level parameters associated with the estimated parameters so that

P (q̂k − tc/2SEk(q̂) < qk < q̂k + tc/2SEk(q̂)) = 1− c, (11)

where c ∈ [0, 1], and tc/2 ∈ R+. For a given c value (small, say c = .05 for 95% confidence intervals), the
critical value tc/2 is computed from the Student’s t distribution tN−m with N−m degrees of freedom since for
each of the data sets available to us we have N < 30. The value of tc/2 is determined by P (T ≥ tc/2) = c/2
where T ∼ tN−m.

4 Numerical Results

In the uninduced experiments, Zoeteweij’s group observed 7.7% nonviable cells while Yu, et al., reported 16%
nonviable cells in their data. Therefore, we let Nr = 0.077 and 0.16, nT = 69 and 68 to correspond with the
data of Zoeteweij, et al., and Yu, et al., respectively. Furthermore, the fraction (percentage) of spontaneous
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lytic host cells as and host cell doubling time Dp are chosen to be within the ranges reported in the literature,
i.e., as = 0.02 and Dp = 24 hours. In Figure 1, we depict the percentage of nonviable cells and spontaneously
reactivated host cells from the simulation of the uninduced model case (1) for the Zoeteweij, et al., and the
Yu, et al., experimental data. The initial condition for all compartments are zero except for HL0 = 1.0×106

and L0 = 1.0 × 107. The values of the parameters used in the simulations presented here are tabulated in
Table 3. From Figure 1, we observe that the nonviable cell and spontaneously reactivated cell percentages
asymptotically reach the specified “equilibrium” values by 1000 hours where we define “equilibrium” to be
the constants in (3) and (5). Even though the cell culture is growing exponentially, the characteristics of the
cell culture eventually become those constants in (3) and (5). The simulations of the average number of lytic
and intracellular DNA per lytically infected host cell, R/HR and VI/HR, respectively are shown in Figure
2. Similarly, we see both R/HR and VI/HR converge to the specified equilibrium values of RA = 2500 and
VIA = 500, respectively by 1000 hours.

The equilibrated simulations and the estimated parameters in Table 3 of the uninduced model case are
assumed to be the properties of the uninduced (control) cell cultures that are used in the reactivation
experiments. In the induced model case, let C0 be the initial number of cells; then the initial conditions
are set to be HL(0) = (1 − Nr − as)C0, HR(0) = asC0, HN (0) = NrC0, L(0) = nHL, R(0) = RAHR,
VI(0) = VIAHR, and VF (0) = 0. As mentioned above, the functional form of the induced lytic cell death
rate δR(s) and reactivation rate α(s) are assumed to be affine functions of the form δR(s) = δcs and
α(s) = αcs + α0 as a first approximation to the “true” forms which are not known. The optimal induced
parameters q̂ = [δ̂c, α̂c] are obtained by fitting the two sets of experimental data from Zoeteweij, et al.,
[27] and Yu, et al., [26] independently in minimizing (7). The optimized induced model parameters are
tabulated in Table 4 along with the standard errors and confidence intervals which are calculated from the
mathematical and statistical method presented in Section 3. We hasten to caution that here we had at
most N = 16 observations when estimating the two parameters (δc, αc) and thus the following remarks
result from using asymptotic distributions when it may be unwarranted. Nonetheless, from Table 4, we
see that the values of the estimated parameters of both groups are within an order of magnitude of each
other. In addition, for both experimental data sets, the standard errors of the estimated reactivation rate
constants α̂c are at least one order of magnitude less than the parameter values while the standard errors of
the induced death rate constants δ̂c have the same order of magnitude as the parameter values. Thus, we
might argue for more confidence in the values obtained for α̂c than values obtained for δ̂c. (But this could
also be a result of using asymptotic analysis when insufficient data has been used.) The estimated induced
parameters q̂ = [δ̂c, α̂c] are then used to generate the viable cell percentage with (2) and then plotted against
the experimental data from Zoeteweij, et al., and Yu, et al., in Figure 3. It can be seen from Figure 3 that
the induced simulations qualitatively agree with both sets of experimental data.

The number of free virions (VF ) simulated from the induced equation (2) with optimized parameters q̂ are
plotted in Figure 4. From the figure, we observe that there is a three to four-fold increase in free virions
produced at 0.3mM butyrate level compared to 3mM butyrate concentration level. This observation in the
simulations agree qualitatively with the experiments from Yu, et al. In [26], Yu and his group report that
with high butyrate concentrations (1.5 and 3 mM), there is a great increase in lytic activity but also a
significant increase in cell death. Therefore, very few free virions are produced in the experiments due to
massive cell death before the completion of the lytic program. However, with a lower concentration level of
butyrate (≤ 0.3 mM) they observe much less cell death and a significant secretion of free virions. The optimal
butyrate dosage threshold that maximizes viral production is numerically computed from equation (2) and
depicted in Figure 5 for the two data sets. From Figure 5 we interpret that the butyrate concentrations below
the optimal threshold suggest that the reactivation activity of latent virus by the inducers is not maximized.
On the other hand, the butyrate concentrations above the threshold imply that the concentration of the
inducers is too toxic and the lytically replicating cells are killed before virus is produced.
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Figure 1: Uninduced simulations of spontaneously reactivated cell (100 × HR/(Htotal)) and nonviable cell
percentage (100×HN/(Htotal)) for the data of Zoeteweij (dashed lines), et al., and Yu (solid lines), et al.

Parameter Symbol Zoeteweij, et al., data Yu, et al., data Units

Net growth of latent host cells γL 3.00× 10−2 3.00× 10−2 hr−1

Nonviable cell degradation µ 1.00× 10−5 1.00× 10−5 hr−1

Natural death of latent host cells dL 1.98× 10−3 5.22× 10−3 hr−1

Spontaneous reactivation of latent host cells α0 1.12× 10−3 1.12× 10−3 hr−1

Cell death due to viral lysis c 4.33× 10−5 3.40× 10−5 hr−1

Synthesis of viral DNA κ 7.11× 10−2 6.65× 10−2 hr−1

Sequestration of viral DNA for encapsulation q 2.08× 10−2 2.08× 10−2 hr−1

Packaging and secretion of virions p 5.36× 10−2 5.83× 10−2 hr−1

Viral DNA per lytic host cell nT 69 68 -
Induced reactivation α̂c 5.51× 10−1 1.40× 10−1 hr−1

Induced death δ̂c 5.13× 10−3 6.76× 10−3 hr−1

Table 3: Parameters from the uninduced model (1) are calculated from (4) with constants as = 0.02,
Nr = 0.077 or 0.16, Dp = 24 hr, n = 10, VIA = 500, and RA = 2500. Parameters from the induced model
(2) are obtained from fits to experimental data.
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Figure 2: Uninduced simulations of the average number of lytic viral DNA copies R/HR and the average
number of intracellular viral DNA copies VI/HR per lytically infected host cell for the data of Zoeteweij
(dashed lines), et al., and Yu (solid lines), et al.
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Figure 3: Cell viability experimental measurements (symbols) and induced model (2) simulations (solid lines)
using fitted parameters for linear functions α(s) and δR(s): (a) Zoeteweij, et al., circles (0 mM), squares
(0.03 mM), triangles (0.3 mM), and diamonds (3 mM), α̂c = 0.551, δ̂c = 5.13 × 10−3 and (b) Yu, et al.,
circles (0 mM), triangles (0.3 mM), stars (1.5 mM), and diamonds (3 mM), α̂c = 0.140, δ̂c = 6.76× 10−3.
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Figure 4: Induced model (2) simulations of free virions using optimized parameters for linear functions α(s)
and δR(s) for experimental data from (a) Zoeteweij, et al., and (b) Yu, et al.
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Figure 5: The optimal butyrate concentration to maximize the quantity of virions produced as a function of
the elapsed induction time for data from Zoeteweij (dashed line), et al., and Yu (solid line), et al.

Data Parameter Estimated Value Standard Error Confidence Interval

Zoeteweij, et al.
α̂c 5.51× 10−1 1.03× 10−2 [5.29× 10−1, 5.73× 10−1]
δ̂c 5.13× 10−3 3.25× 10−3 [−1.83× 10−3, 1.21× 10−2]

Yu, et al.
α̂c 1.40× 10−1 7.84× 10−3 [1.23× 10−1, 1.57× 10−1]
δ̂c 6.76× 10−3 2.88× 10−3 [5.30× 10−4, 1.30× 10−2]

Table 4: Estimated parameter values, standard errors, and confidence intervals

13



5 Discussion and Concluding Remarks

After carrying out the inverse problem with this preliminary model, numerical simulations using the resulting
estimated parameters provide good qualitative fits of cell viability for two independent data sets of KSHV
being induced by butyrate. However, our findings also strongly motivate the need for more longitudinal
data to support model development and validation. With the cell viability data now available, we can only
directly validate the host cells dynamics and indirectly justify the dynamics of the viral DNA in this model.
Specifically, quantitative experimental measurements of cell-associated DNA (L + R + VI) and free virions
(VF ) are needed to evaluate model predictions for the viral compartments. We note that the experimental
data we require are not the typical data collected in experiments. In other words, typical experimental
data are relatively qualitative data recorded at one time point while quantitative longitudinal data are
needed to verify the host cell and viral dynamics presented in this model. Indeed, in almost all efforts with
dynamical models, longitudinal data is essential. These time series data would also permit determination
(i.e., estimation) of the free parameters γL and µ, as well as the unknown constants RA and VIA. We also
note that RA and VIA parameter sensitivity tests reveal that the optimal parameter values δ̂c and α̂c are
relatively insensitive to variations in RA or VIA, since varying RA or VIA by ± 5% produced 3% or less
variation in the optimized parameter values from the corresponding inverse problems.

In addition to the fits of the linear form for α(s) and δR(s), we also fitted the model in OLS problems where
α(s) and δR(s) are allowed to be of Michaelis-Menton form and/or sigmoid shape functions. In Figure 3
from the previous section, we see that the fits to cell viability are reasonable with the simple linear functions
for α(s) and δR(s). We also found that the fits of the induced equations to cell viability data were relatively
insensitive to more complicated functional forms of α(s) and δR(s) (the results are not shown here). In the
future, instead of estimating α(s) and δR(s) with some a priori parameterizations, we could estimate shape
of the functional form using piece-wise linear splines or other approximations as has been successfully done
in other problems with temporally varying parameters and dynamic coefficients [1, 5]. However, to validate
the improvement provided by such models with sophisticated model comparison techniques, richer data sets
are again needed.

With this preliminary mathematical model as an initial study of the reactivating mechanism of latent viruses
by chemical inducers, there are rather obvious modifications we would like to pursue in developing future
generations of the model. First, instead of assuming a constant (net) growth rate for the host cells, a
nonconstant assumption on the host cells (net) growth rate should be added especially after 48 hours. Also,
the initial model presented here is based on the assumption that the host cells are of “all or nothing” type.
That is, a given host cell either has all latent viral DNA (HL) or all lytic replicating DNA (HR) in the
nucleus. A more realistic situation can be illustrated by superimposing a probability distribution on the
parameters to better approximate mixed conditions where a host cell may contain both latent and lytic
virus in varying levels. Such a modeling technique was successfully used in [6] for cellular level HIV models
to account for variable length (with uncertainty) pathways. In models of this type the state variables are
the expected values of concentrations (or of numbers of cells) resulting in delay differential equation models
embodying uncertainty through the explicit dependence of dynamics on probability distributions. Once
again, richer data sets are essential to establish validity for such models.

Finally, instead of a single viral compartment R to quantify copies of viral DNA in the lytic program, we
suggest that one might modify the model to describe Immediate Early, Early, and Late gene expression
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(RNA), represented by compartments R1, R2, and R3 for an induced model in the form

dHL

dt
= (γL − α(s)− δL(s)) HL + ρHR

dHR

dt
=

(
γR − δR(s)− dI(V̄I)− ρ

)
HR + α(s)HL

dHN

dt
=

(
dL + δL(s))HL + (dR + δR(s) + dI(V̄I)

)
HR − µHN

dL

dt
= (γL − α(s)− δL(s)) L + ρ(R1 + R2 + R3)

dR1

dt
=

(
γR − b1 − δR(s)− dI(V̄I)− ρ

)
R1 + α(s)L

dR2

dt
=

(
κ + γR − b2 − δR(s)− dI(V̄I)− ρ

)
R2 + b1R1

dR3

dt
=

(
γR − b3 − δR(s)− dI(V̄I)− ρ

)
R3 + b2R2

dVI

dt
= b3R3 −

(
p + dR + dI(V̄I) + δR(s)

)
VI

(12)

and VF (t) = VF0 +
∫ t

t0

pVI(u)du. The three parameters b1, b2, and b3 represent the rate at which viral DNA

moves from one stage of the lytic program to the next. These parameters can be estimated as 1/T1, 1/T2,
and 1/T3, respectively, where T1, T2, and T3 are the approximate times for each stage of the lytic program.
Again, one would expect variability in these times across cell populations, suggesting a desired introduction
of probability distributions to be estimated instead of the times themselves. Corresponding parameters in
this proposed model and model (2) would not, of course, necessarily represent the same quantities.

By having model compartments that quantify RNA production or promoter activity from genes representative
of each stage of the lytic cycle, one could hope to predict viral reactivation in more detail and compare to
experimental gene expression data. For example, ORF50, vIL6, K8.1 [23] could be representative of the
Immediate Early, Early, and Late stages, respectively. A single compartment L can represent latent gene
expression, primarily ORF73 expression [23].

There may be underlying biological delays, due to the ordered cascade of gene expression that makes up
the lytic program, that are not captured with the model (2). A model such as (12) in which we rewrite the
single R compartment as three compartments R1, R2, and R3 representing the Immediate Early, Early, and
Late phases of the lytic program might be expected to more closely capture the biological delays (or the
associated probability distributions) inherent in the lytic program of the system. To enable development
and validation of such models, experiments involving multi-compartment longitudinal observations will be
required.

In summary, the results reported on here illustrate well a common finding in initial modeling efforts for
biological systems: the need for more longitudinal data and the need for different types of observations than
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are prevalent in current experiments (such as those involving reactivation of latent viruses). Regarding the
initial modeling aspects of this project, we recall that most modeling efforts (including this one) are steps
in an iterative process in which one takes experimental observations and forms statistical and mathematical
models. These models, when used in inverse problems, suggest inadequacies in both modeling and the
experimental data collected. This leads to model modification and extension as well as new experiments to
collect data necessary to validate the new model.
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